Fretting fatigue life evaluation of multilayer Cr–CrN-coated Al7075-T6 with higher adhesion strength—fuzzy logic approach

نویسندگان

  • E. Zalnezhad
  • Ahmed A. D. Sarhan
چکیده

In this research work, an experimental evaluation was conducted to explore the fretting fatigue life of multilayer Cr–CrN-coated AL7075-T6 alloy specimens with higher adhesion strength to substrate as the coating adhesion strength is one of the most critical issues in magnetron sputtering technique. Physical vapor deposition (PVD) magnetron sputtering technique was used for coating purpose, and a fuzzy rule-based system was established to investigate how to achieve higher adhesion of Cr–CrN coating on AL7075-T6 with respect to changes in input process parameters, direct current power, nitrogen flow rate, and temperature. Close assent was obtained between the experimental results and fuzzy model predicted values. Experimental result analysis was performed with Pareto–ANOVA variance as an alternative analysis. The fretting fatigue lives of coated AL7075-T6 alloy were improved 70 % and 22 % at high and low cyclic fatigue, respectively, compared with uncoated specimens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fuzzy logic predictive model for better surface roughness of Ti–TiN coating on AL7075-T6 alloy for longer fretting fatigue life

Keywords: AL7075-T6 alloy Ti–TiN coating PVD magnetron sputtering Surface roughness Fuzzy logic Fretting fatigue a b s t r a c t In this study, the fretting fatigue resistance of AL7075-T6 alloy is investigated using surface treatment Ti–TiN multilayer coating by physical vapor deposition (PVD) magnetron sputtering technique. A fuzzy logic model was established to forecast the surface roughness...

متن کامل

Investigating the fretting fatigue life of thin film titanium nitride coated aerospace Al7075-T6 alloy

Application of surface modification methods is expected to be a supreme solution to diminishing fretting damage. In this study, our aim was to improve the fretting fatigue life of Al7075-T6 alloy by covering it with a TiN thin film hard coating using the magnetron sputtering technique. Coated specimens with the best surface hardness, adhesion strength and roughness were tested with a rotating b...

متن کامل

The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy

In this research work, the influence of higher surface hardness on the fretting fatigue life of hard anodized aerospace AL7075-T6 alloy was investigated. An optimization of the parameters of hard anodized Al7075-T6 alloy to obtain higher surface hardness was presented. Confirmation test was carried out to show the improvement after using the best parameter combination attained from the optimiza...

متن کامل

Study of multilayer and multi-component coatings deposited using cathodic Arc technique on H-13 hot work steel for die-casting applications

Die casting process is used since long, but even today problems like erosion, corrosion, soldering and sticking affect die life. These dies undergo thermal cyclic loads from 70 oC to 600 oC during processing. Physical Vapor Deposition (PVD) hard coating can play an important role in such extreme applications. In the present work, we report the use of Chromium based multila...

متن کامل

A fuzzy logic based model to predict surface hardness of thin film TiN coating on aerospace AL7075-T6 alloy

Aerospace applications and energy-saving strategies in general raised the interest and study in the field of lightweight materials, especially on aluminum alloys. Aluminum alloy itself does not have appropriate wear resistance. Therefore, improvement of surface properties is required in practical applications, especially when aluminum is in contact with other parts. In this work, first titanium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013